
IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 1

A Nonblocking Multistage Switching Network for
Distributed Quantum Computing

Yu Liu, Yingling Mao, Xu Xu Xiaojun Shang, Fan Ye, Fellow, IEEE, and Yuanyuan Yang, Life Fellow, IEEE

Abstract—Quantum computing, utilizing the unique properties
of quantum mechanics, has the potential to revolutionize various
fields. However, current quantum processors face challenges in
scaling the number of qubits, limiting their practical applica-
tions. In response, Distributed Quantum Computing (DQC) has
emerged as a promising paradigm where multiple interconnected
Quantum Processing Units (QPUs) collaborate to execute quan-
tum circuits. In this paper, we focus on designing networks to
interconnect QPUs for the implementation of DQC. We find that
in real-world experiments and systems, the photon collection
and coupling efficiency is low, leading to significant performance
degradation in direct connection networks. To address this
limitation, we propose a novel multistage switching network
tailored for DQC, which has low system complexity and high
entanglement generation rates. The proposed switching network
comprises log2(N) stages and N/2 binary switches at each stage,
where N represents the number of QPUs. We prove that the
proposed network is nonblocking and develop an efficient routing
algorithm with a time complexity of O(N log(N)). Additionally,
we show the success probability of entanglement generation in the
proposed switching network. Extensive simulations demonstrate
that our network significantly outperforms the highly efficient
circuit-switching Beneš network and three direct connection
networks.

I. INTRODUCTION

Quantum computing leverages quantum mechanical phe-
nomena such as quantum entanglement and superposition to
perform computation. Quantum computers offer significant
advantages in performing some specialized tasks that classical
computers are unable to solve within a feasible timeframe.
For example, they can factorize large integers [1], perform
approximate optimization [2], and execute Gaussian boson
sampling [3] with substantially greater efficiency. The practical
applications of quantum computing are far-reaching, with
the potential to address global challenges. For instance, by
solving large integer factorization problems, quantum com-
puters could break certain encryption schemes, and quantum
simulations and machine learning algorithms could facilitate
drug discovery processes [4]. Numerous entities are making
significant strides in the development of quantum computers.
For example, Google has unveiled ‘Sycamore’ [5], a quantum
computer with 70 qubits, and IBM has introduced ‘Osprey’, a
quantum processor equipped with 433 qubits [6].

Despite the significant development of quantum computers,
current quantum processors still fall short of the capabilities

Y. Liu is with the Department of Computing at Hong Kong Polytechnic
University (liuyu@polyu.edu.hk). Y. Mao, X. Xu, F. Ye, and Y. Yang
are with the Department of ECE, Stony Brook University {yingling.mao,
xu.xu, fan.ye, yuanyuan.yang}@stonybrook.edu. X. Shang is with the De-
partment of CSE, University of Texas at Arlington (xiaojun.shang@uta.edu).

for real-world applications. For example, it is estimated that
breaking RSA-2048 encryption may require millions of phys-
ical qubits [7]. However, it is challenging to build a large-
scale quantum processor with sufficient physical qubits due to
various reasons, e.g., qubits interaction, resource requirement,
fabrication, and control challenges [8]. Until now, no quantum
computing platform has achieved scalable expansion of qubit
numbers without compromising performance or incurring dis-
proportionate costs, energy consumption, or footprint [9].

A promising approach to building large-scale computing
systems capable of supporting real-world applications is the
Distributed Quantum Computing (DQC) paradigm. Under this
paradigm, multiple interconnected Quantum Processing Units
(QPUs) collaborate to execute quantum circuits, which each
QPU cannot execute individually [10], [11]. There are vari-
ous platforms for constructing quantum processors, including
superconducting qubits [6], trapped ions [9], nitrogen-vacancy
(NV) centers [12], and neutral atom [13]. This paper focuses
on trapped ion quantum computers for several reasons. First,
trapped ion quantum processors have a high quantum vol-
ume [14], a result of their long coherence time, high gate
fidelity, and high qubit connectivity [15]. As of June 25, 2023,
the top three quantum processors, in terms of quantum volume,
are based on trapped-ion technology. Second, it is possible to
establish remote entanglement between two distinct trapped
ion-based QPUs at a relatively high rate [16]. Specifically,
under the trapped ion platform, two QPUs can be connected by
linking them with the same Bell State Analyzer (BSA) using
optical fibers (as shown in Fig. 4). If two QPUs are connected
to the same BSA, a shared Bell state can be generated between
them, which is then used for performing remote quantum gate
operations (see Section III for details). It is worth noting that
the results of this paper could also be directly applied to
other platforms such as NV centers and neutral atom quantum
platforms.

In this paper, we focus on designing networks to inter-
connect QPUs for the implementation of DQC. There are
two types of networks: direct connection networks (static
networks) and switching networks. Direct connection networks
such as line, ring, and grid networks have static connections
between neighboring nodes. In a static network, when two
non-neighboring QPUs request a shared Bell state, routes
between them must first be selected. Subsequently, a shared
Bell state is generated on each link along the chosen routes,
followed by the execution of quantum swapping at the inter-
mediate QPUs. In contrast, switching networks offer dynamic
connections. By carefully configuring the switches based on
the requirements of the QPUs, QPUs that request a shared

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 2

Bell state can be connected directly to the same BSA, thereby
establishing a link between them. Switching networks present
two primary advantages over static networks. First, QPUs in
static networks require multiple photon collection modules and
associated control modules, increasing the system complexity
and posing significant implementation challenges. Second,
static networks suffer from low entanglement generation suc-
cess rates due to the low photon collection and coupling
efficiency experienced in real-world systems, a problem that
our switching networks effectively mitigate.

Given the advantages of switching networks, this paper is
centered on designing switching networks and the correspond-
ing algorithms to enhance the efficiency of DQC systems.
While some existing switching networks, such as the Beneš
network, could potentially be adapted to interconnect QPUs
for implementing DQC, their direct application is unsuitable
due to their high cumulative insertion loss. This issue is
particularly detrimental to the fragile photonic links between
QPUs. Consequently, there is a clear necessity to design
switching networks that are specifically tailored for DQC.
Unlike traditional circuit-switching networks that establish
direct communication paths between sources and destinations,
our DQC network demands a distinct architecture. Specifically,
two QPUs must be linked to the same BSA to generate a
shared Bell state. Our goal is to devise a network capable
of simultaneously accommodating all potential entanglement
requests from a collection of distributed QPUs.

This paper contributes to DQC in several significant ways.
First, we propose a multistage switching network specifically
designed for DQC and a corresponding routing algorithm. This
network interconnects N QPUs and N/2 BSAs via log2(N)
stages of switches. Secondly, we prove that the proposed
switching network is nonblocking and can simultaneously
support all possible quantum entanglement requests from the
connected QPUs. In addition, we devise an efficient routing
algorithm for the network, which operates with a time com-
plexity of O(N log(N)). Lastly, we evaluate the performance
of our proposed switching network through extensive simu-
lations under real-world parameters. Our results indicate that
the proposed switching network has a significant performance
advantage over existing networks, including the traditional
Beneš network and various static networks. Specifically, the
average time for successful entanglement generation in our
network is significantly faster than that in the Beneš, grid,
ring, and line networks.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related works. Section III
discusses trapped ion-based distributed quantum computing.
Section IV shows the limitations of static networks. Section V
presents our proposed network design along with a dedicated
algorithm. Section VI presents the simulation results. Finally,
Section VII concludes the paper.

II. RELATED WORK

DQC is recognized as a promising paradigm for supporting
large-scale quantum circuits [10]. A central challenge of
DQC is establishing entanglement between QPUs [17], [18].

Shared Bell states are required to perform remote quantum
gates on qubits located in different QPUs. There have been
several studies dedicated to link layer entanglement generation
using various quantum technologies [12], [16], [19], [20].
Notably, Stephenson et al. demonstrated generating Bell states
of trapped-ion qubits at an average rate of 182 Hz [16]. In [20],
Hannegan et al. introduced a networking architecture leverag-
ing neutral-atom-based nondestructive single-photon detection
and single-photon storage to improve entanglement rates in
quantum networks based on trapped ions. Simulation results
based on experimental parameters showed that the proposed
architecture can significantly increase the remote entanglement
generation rates.

Moreover, there has been research focusing on generat-
ing remote entanglement between two non-directly connected
nodes via entanglement swapping in the context of the
quantum internet [21]–[26]. In [24], Mihir et al. considered
the entanglement routing problem in the quantum internet
and proposed a routing algorithm allowing multiple quan-
tum processor pairs to generate entanglement simultaneously.
In [23], Shi et al. studied the entanglement routing problem for
concurrent entanglement request pairs and arbitrary network
topologies and introduced an entanglement routing algorithm
tailored to the unique properties of quantum networks. In [22],
Farahbakhsh et al. designed an opportunistic entanglement
routing algorithm for the quantum internet and showed that the
opportunistic approach outperforms conventional approaches.
However, these works focused on static networks. In contrast,
this paper underscores the advantages of switching networks
for DQC and, therefore, focuses on switching networks.

Switching networks such as the Beneš, Omega, and Banyan
networks have been widely studied in the fields of telecommu-
nications, data center networks, and network-on-chip systems,
primarily for establishing direct connections between source
and destination nodes. The Beneš network is a non-blocking
network with 2 log2(N)-1 stages, ensuring connections be-
tween N inputs and their corresponding outputs without
blocking or contention [27]. The Omega [28] and Banyan [29]
networks are a blocking switching network with log(N)
stages. In this paper, our goal is to generate shared Bell states
between QPUs. To achieve this, we need to connect both
QPUs to the same BSA. The Beneš network can be adapted
to DQC by treating the QPUs as inputs and the BSAs as
outputs. However, this adaptation leads to a low entanglement
generation rate, as the photon loss probability in switches
increases exponentially with the number of switch stages. As
for the Omega network, it is inherently blocking in the DQC
scenario we are examining.

There are also some prominent works related to using
switches for DQC. In [30], Duan et al. proposed a hierarchical
approach to interconnecting trapped ion registers and photon
detectors using a switch network, but they did not provide
a specific switching network topology. In [31], Dong et al.
experimentally demonstrated an 8-input Mach-Zehnder mesh
network for remote entanglement generation, showcasing the
feasibility of interconnecting QPUs using a switching network.
However, the paper primarily focused on an 8-input system
and did not present the routing algorithm and its performance

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 3

:superconducting qubit

:qubit connection

:trapped ion qubit

a) IBM-Melbourne b) IonQ

Fig. 1: Qubit Connectivity Comparison.

for an arbitrary number of QPUs. In [32], Bartolucci et al.
proposed switch networks for single photonic fusion-based
quantum computers, while this paper focuses on interconnect-
ing multiple quantum processors.

III. TRAPPED ION-BASED DISTRIBUTED QUANTUM
COMPUTING

Among several suitable platforms for constructing quantum
computers, such as superconducting qubits, NV centers, and
topological qubits, trapped ion-based processors stand out for
their long coherence time, excellent qubit connectivity, and
high gate fidelity. For instance, the trapped ion-based H1-
2 Quantinuum device demonstrates significant improvements
over the superconducting qubit-based ibmq mumbai device.
Specifically, the single-qubit gate, two-qubit gate, and readout
error of the H1-2 Quantinuum device are 2x, 12.9x, and 7.2x
smaller, respectively, compared to those of the ibmq mumbai
device [33]. Quantum volume is a well-accepted metric orig-
inally proposed by IBM [14] to measure the power of near-
term quantum computers. Quantum volume, denoted by VQ,
is defined as

VQ = min
[
N, 1/(Nϵeff)

]2
.

In this equation, N represents the number of qubits, and
ϵeff denotes the average error rate of a two-qubit gate. So
far, the top three quantum processors in terms of quantum
volume were based on trapped ion qubits. Despite having a
relatively large number of qubits, superconducting quantum
computers often demonstrate lower quantum volumes than
their trapped ion-based counterparts for two primary reasons.
Firstly, the gate fidelity of trapped ion-based quantum com-
puters generally surpasses that of superconducting quantum
computers. Secondly, trapped ion-based quantum computers
exhibit excellent qubit connectivity, allowing for efficient
execution of quantum gate operations. Notably, quantum gate
operations can only be performed on connected qubits. In
the case of the IBM-Melbourne superconducting platform, as
shown in Fig. 1.a, additional entanglement swapping gates are
required to perform a quantum gate operation on two non-
neighboring qubits, which leads to an increase in the average
error rate of two-qubit gates, i.e., ϵeff. In contrast, the qubit
connectivity of trapped ion-based quantum processors follows
a mesh topology as shown in Fig. 1.b. Consequently, this paper
focuses on trapped ion-based QPUs.

A. Trapped Ion Quantum Computer

Next, we will provide a brief introduction to the trapped
ion-based quantum computer. Under the trapped ion platform,
the electronic energy levels represent the states of each trapped
ion-based qubit, with the ions being trapped by an oscillating
radio-frequency electric field [9]. We can trap a number of
ions, typically located in a line as depicted in Fig. 2. There may
be other topologies for the trapped ions, but they may raise
additional difficulties, such as introducing extra decoherence
sources. The trapped ion qubits exhibit long coherence times,
e.g., ranging from 0.2s to around 600s, partially depending on
the energy levels used to represent the basis states [9].

To readout qubits, a laser beam with a particular frequency
is applied to the ion from one direction, as depicted in Fig. 2.
The ion will fluoresce if it is in state |0⟩, and the ion will
not interact with the laser if it is in state |1⟩. Then we detect
photons in a direction orthogonal to the laser beam. If photons
are detected, the ion is in state |0⟩, and in state |1⟩ otherwise.
The readout fidelity is pretty high, e.g., 99.99% [34]. As for
single qubit logic gates, we can perform gate operations on a
qubit by applying laser or microwave radiation depending on
the type of trapped ion used, where the fidelity can be up to
99.9999% [15]. Two-qubit gates, performed by leveraging the
Coulomb interaction between ions, can achieve a fidelity up
to 99.9% [35]. Much like single-qubit gates, these operations
are executed by applying carefully tailored laser pulses to
the target ions. This method allows us to perform two-qubit
gates between any pair of qubits, thereby establishing all-to-
all connectivity as shown in Fig. 1.b. While it is feasible
to trap a significant number of ions, the implementation of
the required optical and electronic control poses significant
challenges. Therefore, DQC becomes a necessity.

B. Remote Quantum Gate

While the DQC paradigm offers advantages in terms of
increased qubit capacity, it also introduces the challenge of
applying gate operations to qubits located in separate QPUs,
namely, remote gates. All quantum circuits can be imple-
mented using single-qubit gates and CNOT gates [36]. Hence,
the focus of our discussion will be on the implementation
of remote two-qubit CNOT gates. Remote two-qubit quantum
gates can be implemented by leveraging a shared Bell state.
Fig. 3 depicts the circuit for implementing a remote CNOT
gate on two qubits, q1 and q4, located in different QPUs, while
consuming a shared Bell state, denoted as |Φ+⟩. It should be
noted that the shared Bell state does not necessarily have to
be |Φ+⟩, as any of the four Bell states, i.e., |Φ+⟩, |Φ−⟩, |Ψ+⟩,
and |Ψ−⟩, can be utilized. Due to space constraints, the proof
of this statement is omitted.

C. Herald Entanglement Generation

Since each remote gate on qubits in two QPUs consumes a
shared Bell state, we will briefly introduce how to generate
entanglement between two trapped ion qubits in different
QPUs. The entanglement generation of two trapped ion qubits
is illustrated in Fig. 4. The protocol for link-layer entanglement

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 4

Electro
d

es

Fluorescence

Laser Pulses

: Trapped Ion

Fig. 2: Trapped Ion-based Processor.

𝐻

𝑋

𝑍

|Φ+⟩

QPU 1

QPU 2

Classical
Channel

𝐻
𝑋𝑍

Measure:Gates: :

2

1

3

4

Fig. 3: Remote CNOT Gate.

⋯

⋯

:Photon

BSA

Photon Collection and
Coupling to Fiber

QPU 1

QPU 2

Laser
Pulse

A A

B B

:Fiber

:Ion

Fig. 4: Herald Entanglement Generation.

generation is as follows. First, laser pulses from the same
source are split and used to simultaneously excite qubit A
in QPU 1 and qubit B in QPU 2. If successful, this process
will generate two entangled ion-photon pairs, establishing
entanglement between ion A and photon A and between
ion B and photon B. Subsequently, the emitted photons are
collected and coupled into fibers. If the BSA detects the two
photons, there are four possible outcome patterns of the same
probability, and only two patterns herald a successful Bell’s
state entanglement generation [16]. That is, if two photons are
detected by the BSA, the probability of a successful Bell state
generation is 0.5. If the BSA observes the desirable patterns,
it sends an acknowledgment signal to the two QPUs, and they
can use the shared Bell state to perform remote two-qubit
gates. Otherwise, the BSA sends a negative acknowledgment
signal to the two QPUs, and they can repeat the entanglement
generation process.

We use pp to represent the probability that each time we
excite an ion, it successfully generates an entangled ion-
photon pair, and the photon is successfully collected and
coupled to the fiber. We use pf to denote the probability of a
photon successfully traversing the fiber and reaching the BSA.
Furthermore, pd is used to represent the overall efficiency
of the BSA, specifically, the probability that the detectors
of the BSA will successfully detect two photons, given that
two photons have reached the BSA. For each entanglement
generation attempt, the success probability, denoted by pa, is
as follows:

pa =
1

2
p2pp

2
fpd. (1)

D. Scalable Distributed Quantum Computing

To execute DQC, the process starts with the represen-
tation of quantum algorithms as quantum circuits, utilizing
the quantum gates available to the specific platform being
used—in the case of this paper, the trapped ion platform. Each
quantum platform can support only certain types of quantum
gates, which possess unique parameters such as fidelity and
gate operation time [37]. Following this, the logical qubits
of the quantum circuit are mapped onto the physical qubits
within the QPUs. It is worth noting that to perform quantum
error correction, multiple physical qubits may represent a
single logical qubit [38]. The above-mentioned two steps
can be accomplished synergistically to enhance the overall
performance.

Subsequently, quantum gates are applied to the qubits as
determined by the quantum circuits. If a gate is applied to
qubits located on different QPUs, it consumes a shared Bell

state, which is generated through the interconnection network.
If two QPUs are directly connected to a BSA, the procedure
outlined in Section III-C can be used. However, if they are
not directly connected, as in the case of QPU 1 and QPU 3
in Fig. 5, entanglement swapping in intermediate processors
becomes necessary. As shown in Fig. 5, to generate a share
Bell state between QPU 1 and QPU 3, we initially create
two such shared states: one between QPU 1 and QPU 2,
and another between QPU 2 and QPU 3. Following this,
entanglement swapping is performed on QPU 2. If successful,
this results in a shared Bell state between QPU 1 and QPU 3.

The physical layer of distributed quantum computing is
depicted in Fig. 6. Utilizing this architecture, we can assemble
a set of QPUs into a powerful distributed quantum computing
system. Moreover, it is possible to partition the entire quantum
computing system into multiple virtual quantum slices. These
slices can execute quantum algorithms in parallel, similar to
network slicing and virtual machines in classical computing
systems.

IV. PERFORMANCE LIMITATIONS OF STATIC NETWORKS:
EXTREME CASE ANALYSIS

In this section, we delve into an analysis of the performance
of static networks as employed in quantum internet. In partic-
ular, we examine their limitations under low photon collection
and coupling efficiency, pp. While low pp is encountered in
real-world systems, they are often overlooked in studies fo-
cusing on the quantum internet. Furthermore, we demonstrate
that entanglement swapping within static networks can result
in a degradation of the fidelity of the generated shared qubit
pairs. Important notations are listed in Table I.

A. Static Networks

To establish interconnections between QPUs, a common ap-
proach employed in the context of quantum internet [23], [24]
is to create static links between them. This involves positioning
a BSA at the midpoint of each link as seen in the line network
example in Fig. 7.a. Mesh topologies, requiring (N−1)! links
and N collection modules per QPU, are non-scalable. Hence,
non-mesh designs, like grid or circular networks, are used,
where entanglement swapping in intermediate QPUs enables
shared Bell state generation on indirectly linked QPUs.

A typical protocol [24] for generating a shared Bell state
between two S-D QPUs (Source-Destination QPUs) connected
by intermediate QPUs (also known as repeaters in the context
of quantum internet) in the static topology is as follows. The
system operates in slotted time, where each time slot should be

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 5

QPU 1

Swapping
Circuita)

b)

QPU 2 QPU 3BSA 2BSA 1

: Entangled Bell Pair : Classical Bits

Fig. 5: Entanglement Swapping.

Upper Layers

In
terco

n
n

ectio
n

…

QPU 1

QPU 2

QPU N

…

BSA 1

BSA 2

BSA M

Fig. 6: DQC Architecture.

QPU 1

BSA 1 BSA 2 BSA 3

QPU 2 QPU 3 QPU 4

QPU 1

QPU 2

QPU 3

QPU 4

2×2 MZI
optical
switch

a)

b)

𝐼1

𝐼2

𝑂1

𝑂2

B
SA

B

SA

Fig. 7: Static and Switching Networks.

Symbol Description
pp Probability of successful photon generation, collection,

and coupling.
pf Probability of a photon successfully traversing the fiber.
pd Probability of the BSA detectors successfully detecting

two photons.
pa Probability of successful entanglement generation in each

link-layer attempt.
Te Duration of the external phase.

γmax Maximum photon production rate.
ne Maximum number of entanglement generation attempts

during the external phase.
pe Probability of successfully generating a shared Bell on

each link between the S-D QPUs in each slot.
ps Probability of successful entanglement swapping.
pr Probability of successfully generating a shared Bell be-

tween the S-D QPUs in each slot.
pb/pϕ Probability of a bit/phase flip error in shared entangled

qubit pairs on each link

TABLE I: Notation Table

less than the coherence time of the qubits. Each time slot has
two phases, namely external and internal phases. First, in the
external phase, each link on the routes between the S-D QPUs
attempts to generate shared entangled pairs independently us-
ing the protocol in Section III-C. Let Te be the duration of the
external phase, and γmax be the maximum photon production
rate of each QPU for entanglement generation [20]. Therefore,
the maximum number of link-level entanglement generation
attempts during the external phase is ne ≜ Te · γmax. If we
successfully generate shared Bell states for all the links on
a route between the S-D QPUs, we perform entanglement
swapping on each intermediate QPU along the route in the
internal phase. We use ps to denote the success probability of
each entanglement swapping process.

Next, we analyze the probability of successfully generating
a shared Bell state on a route between the S-D QPUs within
a given slot, denoted by pr. Assume that there are N − 1
repeaters1 [23], [24] (intermediate QPUs) in the route between
the S-D QPUs. Then, the success probability of a link in the
route successfully generating a shared Bell state during the
external phase, denoted by pe, is as follows:

pe = 1− (1− pa)
ne . (2)

1Quantum repeaters function as specialized quantum processors that employ
entanglement swapping to establish long-distance quantum entanglement
across a network.

Here, pa from (1) represents the success probability of each
entanglement generation attempt. Then, the success probability
pr is as follows

pr = (pe)
Nps

N−1. (3)

Here, (pe)N represents the probability that each link of the
N links on the route has successfully generated a shared Bell
state, and ps

N−1 is the probability that the quantum swappings
on the N − 1 intermediate QPUs are successful. Generally
speaking, pa = 0.5p2pp

2
fpd is small. Therefore, to get some

intuition about pr, we express pr as Taylor series at pa = 0
as follows:

pr = pN−1
s (nepa)

N (1 + o(pa))

∼ pN−1
s (0.5nep

2
pp

2
fpd)

N .
(4)

Next, we will discuss why repeaters are favored in the
context of quantum internet, while it may not be the best
choice for distributed quantum computing. Assume L is the
distance between the S-D QPUs, and the N − 1 intermediate
QPUs are equally distributed between these two QPUs. As
a result, the distance between each pair of adjacent QPUs is
L/N . From [23], [24], we have, pf = e−kf

L
N , where kf is

the parameter measuring the fiber loss. In the context of the
quantum internet, QPUs are typically located far apart, and
pf often becomes the bottleneck, and pp is not considered in
their formulation, i.e., pp = 1 in [23], [24]. Under this case,
by adding N−1 repeaters between the S-D QPUs, the success
rate pr is as follows:

pr ∼ pN−1
s (0.5nepd)

Ne−2kfL. (5)

From (5), if 0.5nepdps > 1 which is true in general, the
success probability increases as the number of intermediate
nodes, N , increases when pf is close the 0.

Despite the advantage of using intermediate nodes in
the context of quantum internet, it may cause performance
degeneration in distributed quantum computing. Within the
framework of DQC, QPUs are typically positioned in close
proximity to each other. For instance, they might be located
within the same room, mere meters apart, or even consolidated
onto a single board [9]. Additionally, quantum frequency
conversion can be utilized to decrease the probability of photon
loss in the fiber [20]. Assuming a fiber loss rate of 30 dB/Km,
the likelihood of experiencing photon loss in a 10-meter fiber
segment is approximately 0.933. Therefore, pf is no longer
the bottleneck in this case. On the other hand, it is difficult to
collect the photon emitted by trapped ions and couple it into

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 6

the fiber [20], [39]–[41]. For example, a typical value of pp is
measured to be 0.021 in [41]. From (4), when pp is sufficiently
small, the success rate decreases as N increases. Even if ne

is sufficiently large (assuming infinite coherence time) such
that pa = pe = 1, we find that pr = pN−1

s still limits
the success probability of each time slot. As an illustration,
assuming ps = 0.9 as reported in [42], for a network consisting
of N = 16 hops and assuming an infinitely large ne, the
probability pr is 0.185.

Furthermore, the process of entanglement swapping on
the intermediate QPUs may result in fidelity degradation.
The generated shared qubit pair on each link is subject to
imperfections, making them susceptible to bit and phase flip
errors [43]. Assume we want to establish the state |Φ+⟩ along
each link. Nonetheless, there is a probability pb for a bit
flip error in the generated qubit pair on each link, where we
ignore the phase flip error for simplicity. Consequently, the
density matrix representing the shared qubit pair on each link
is expressed as:

ρ0 = (1− pb)|Φ+⟩⟨Φ+|+ pb|Ψ+⟩⟨Ψ+|, (6)

resulting in a fidelity of (1− pb). Let us consider the scenario
where the objective is to generate a shared qubit pair between
source and destination QPUs, interconnected by a line network
with N − 1 intermediate QPUs. Initially, shared entangled
qubits are generated on each link, each with a density matrix
ρ0. Following successful entanglement swapping at each of
the N − 1 intermediate QPUs, the resulting end-to-end entan-
glement between the source and destination QPUs is described
by the density matrix

ρN = fN |Φ+⟩⟨Φ+|+ (1− fN)|Ψ+⟩⟨Ψ+|, (7)

where fN = 2N−1
(
1
2 − pb

)N
+ 1

2 is the fidelity of ρN , with pb
denoting the probability of bit-flip errors per link. The proof
of (7) is omitted due to space limitations, and the main idea
of the proof is mathematical induction. As N goes to ∞, the
fidelity of ρN will go to 1/2, and the generated entanglement
becomes useless. In addition, based on (7), we can prove the
average fidelity of successfully generating shared Bell states
between each pair of QPUs in a line network with N links,
denoted as E[F (N)].

Theorem 1. The average fidelity of successfully generated
shared Bell states between each pair of QPUs within a linear
static network comprising N+1 QPUs is given by:

E[F (N)] =
1− 2pb
2Npb

+
(1− 2pb)

(
(1− 2pb)

N+1 − 1
)

4N(N + 1)p2b
+

1

2
.

The proof of Theorem 1 is omitted due to space limitations.
As N goes to ∞, the average fidelity E[F (N)] goes to 0.5.

B. Switching Networks
The second way to interconnect QPUs and BSAs is using

optical MZI switches [31]. The success probability of attempt-
ing n times using the switching network that we proposed in
Section V-A is shown in (10). We express (10) as Taylor series
at pp = 0 as follows:

p′r(n) = 0.5np2pp
2
fp

2log2(N)
i pd + o(p2p). (8)

Fig. 8: Success probability vs. number of QPUs

Fig. 9: Average Fidelity vs. number of QPUs

In this equation, pi is a probability related to the insertion
loss of switches. As observed in Equation (10), when pp
is small, the success probability in our proposed switching
network contains the factor p2p, while the success probability
of the line network as given in Equation (4) contains the
factor p2Np . Therefore, in the extreme case where pp is close
to 0 and becomes the bottleneck, the proposed switching
network exhibits superior performance compared to the static
line network.

Next, we present numerical results comparing the success
entanglement generation probabilities in (3) and (10) for
the static line network and the proposed switching network,
respectively. These results were derived using real-world pa-
rameters from experiments. As shown in Fig. 8, the switch
network outperforms the static line topology. In addition,
assuming that there bit flip error exists, we compare the
average fidelity of successfully generated shared Bell states
between each pair of QPUs within a linear static network and
our proposed switching network. As depicted in Fig. 9, the
average fidelity of the shared qubit pairs generated within
our proposed switching network exceeds that of the static
line network. Note that in Fig. 9, only bit-flip errors are
considered, and while switching networks may not affect
quantum properties on certain platforms, they may introduce
fidelity degradation on others. The analysis in this section is
intended to demonstrate the advantages of switching networks
over static configurations, and we will investigate the platform-

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 7

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

QPU 1

QPU 2

QPU 3

QPU 4

QPU 5

QPU 6

QPU 7

QPU 0

Stage 0 Stage 1 Stage 2 BSAs

Fig. 10: 8-input QMSN.

specific fidelity impacts of switches in our future work. Con-
sequently, our proposed switching network demonstrates the
capability to produce entangled qubit pairs of superior quality
and with a higher probability of success.

V. SWITCHING NETWORK AND ALGORITHM DESIGN

In this section, we design a multistage switching network
for DQC and analyze its performance.

A. Multistage Switching Network Design

We consider building a multistage switching network using
2× 2 binary switches. Each binary switch has two inputs and
two outputs and can operate in two states: Straight and Cross.
In the Straight state, input 1 connects to output 1, and input
2 connects to output 2. Conversely, in the Cross state, input
1 links to output 2, and input 2 connects to output 1. We
focus on connecting N QPUs to N/2 BSA. Each QPU has an
output, and each BSA has two inputs as shown in Fig. 4.

To facilitate our discussion, we define two functions,
Sl(i, n,N) and Sr(i, n,N), which represent the left circu-
lar shift and right circular shift, respectively. The function
Sl(i, n,N) generates a number by first expressing integer i
as a binary number with log(N) bits, then performing an in-
place left circular shift on the last n bits, while the remaining
bits outside of the last n are left unchanged. For instance, if N
equals 16 and we want to calculate Sl(6, 3, 16), we represent
6 as a log(16)-bit (4-bit) binary number 01102. We then apply
an in-place left circular shift on the last three bits, resulting
in 01012, or 5 in decimal notation. Similarly, the Sr(i, n,N)
function generates a number by first expressing integer i as a
binary number with log(N) bits. It then applies an in-place
right circular shift on the last n bits, leaving the remaining bits
outside of the last n unchanged. For example, if we want to
calculate Sr(5, 3, 16), we represent 5 as 01012. Then we apply
an in-place right circular shift on the last three bits, resulting
in 01102, or 6 in decimal notation.

Next, we present the structure of the proposed multistage
switching network, named Quantum Multistage Switching
Network (QMSN). Fig. 10 shows an instance of an 8-input
QMSN. The N -input QMSN consists of log(N) stages of
switches, and each stage has N/2 binary switches. The two
inputs of the i-th switch in each stage are labeled by 2i and
2i+ 1, where i ∈ [N/2] ≜ {1, 2, · · · , N/2}. Similarly, The
two outputs of the i-th switch in each stage are labeled by
2i and 2i+ 1, where i ∈ [N/2]. Moreover, the inputs of the

i-th BSA are labeled by 2i and 2i+ 1, where i ∈ [N/2].
Next, we illustrate the interconnections between the QPUs,
switching stages, and BSAs. For any given i ∈ [N], QPU i is
connected to input i of stage 0. Then, the i-th output of stage 0
is connected to the Sr (i, log(N), N)-th input of stage 1. For
example, in Fig. 10, outputs 0, 1, · · · , 7 of stage 0 are con-
nected to inputs (Sr(0, 3, 8), Sr(1, 3, 8), · · · , Sr(7, 3, 8)) =
(0002, 1002, 0012, 1012, 0102, 1102, 0112, 1112) of stage 1, re-
spectively. For each stage j ∈ {1, 2, · · · , log(N) − 1},
the i-th output connects to the Sl(i, j + 1, N)-th input of
the next stage (or BSA stage if j = log(N) − 1). For
instance, in Fig. 10, outputs (0, 1, · · · .7) of stage 1 are
connected to inputs (Sl(0, 2, 8), Sl(1, 2, 8), · · · , Sl(7, 2, 8))=
(0002, 0102, 0012, 0112, 1002, 1102, 1012, 1112) of stage 2.

The network we’ve designed bears similarities to the Beneš
and Banyan networks. However, there exists a distinct differ-
ence: while the Beneš and Banyan networks aim to connect
inputs to corresponding outputs, the QMSN is purposefully
designed to route two paired inputs to the exact same BSA
for herald entanglement generation. That is, the proposed
network has a different purpose from the Beneš and Banyan
networks. In addition, the Beneš network with N inputs has
2 log2(N)−1 stages, while the proposed network has log2(N)
stages. Therefore, compared with the Beneš, the proposed
approach has a lower cumulative insertion loss and a high
entanglement generation rate. Moreover, the looping routing
algorithm for the Beneš network and the self-routing algorithm
are not feasible for our proposed network, and we need to
propose a dedicated routing algorithm.

As for the placement of laser sources for the proposed
QMSN, an additional multistage switching network, e.g., as
a reversed QMSN, can be employed to direct laser pulses to
the QPUs. N/2 laser sources first pass through beam splitters,
and then the QMSN routes them to the appropriate QPU pairs
to excite the qubits.

B. Performance Analysis

Next, we show that QMSN is nonblocking and design a
routing algorithm for it.

Consider a DQC system with N QPUs. In the system, at
most N/2 pairs of QPUs may request shared Bell states at any
given time. Therefore, we specifically examine the case where
N QPUs concurrently request N/2 shared Bell states. The
number of all possible request patterns is 1 ·3 ·5 · . . . · (N−1),
equivalent to the total number of ways to partition N distinct
elements into N/2 pairs. For any request pattern, if a network
can simultaneously connect each pair of QPUs to the same
BSA, we refer to it as nonblocking. We use R to denote
the request pattern, which is the set of QPU pairs requesting
shared Bell state. As QPU pairs are rerouted to the inputs
of each stage of switches, for simplicity in notation, we
will refer to QPU pairs as ‘input pairs’ at each stage. For
instance, R = {(0, 3), (1, 7), (2, 6), (4, 5)} represents that the
input pairs (0, 3), (1, 7), (2, 6), and (4, 5) are concurrently
requesting shared Bell states.

In what follows, we demonstrate that the proposed QMSN
is nonblocking – specifically, it is rearrangeably nonblocking.

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 8

Algorithm 1: switchAlg0 (for stage 0)
Input: R
Output: d0, routing decision for stage 0
Initialization: d[j]← NaN for each input j in R

// constructing a constraint graph
1 foreach input i in R do
2 if i mod 2 == 0 then
3 add an edge between node i and node i+ 1;
4 end
5 end
6 foreach request pair (i, j) ∈ R do
7 add an edge between node i and node j;
8 end
// making routing decisions

9 d0[0]← 0 ; /* decision for input 0 */
10 i⋆ ← 0 ; /* latest processed input */
11 while ∃i such that di = NaN do
12 if i⋆ has a neighbor j and d[j] == NaN then
13 d0[j]← |1− d0[i

⋆]|;
14 i⋆ ← j;
15 else
16 i⋆ ← randomly chosen j where d0[j] == NaN;
17 d0[i

⋆]← 0;
18 end
19 end
20 return d0;

To prove it, we first introduce the following lemmas. Lemma 1
guides the design of the routing algorithm for stage 0, while
Lemma 2 guides the design for the subsequent stages.

Lemma 1. For any request pattern R consisting of N paired
inputs, we can partition the inputs into two sets such that:

• for each i ∈ [N/2], input 2i and input 2i+ 1 are always
in different sets,

• each pair of inputs is divided between the two sets.

Proof. We begin by constructing a constraint graph with
N vertices, each representing one of the N inputs. We
add edges to the graph in the following manner. First, for
each i ∈ [N/2], add a red-colored edge between nodes 2i
and 2i + 1. Then, for each pair of inputs in the request
pattern R, add a blue-colored edge between them. Note that
there are N edges and N vertices in the graph, and each
node is connected to two edges of different colors. As an
example, let’s consider a scenario where N = 16 and R =
{(0, 9), (1, 2), (3, 5), (4, B), (6, D)(7, C), (8, A), (E,F)},
where A,B, · · · , F represent hexadecimal numbers. The
resulting constraint graph would be as follows:

0 1 4 52 3 6 7

8 9 C EA B D F

Fig. 11: Type I constraint graph for Stage 0.

The lemma can then be restated as demonstrating that the
constraint graph is 2-colorable for every possible request

pattern. In a graph where each node has a degree of 2, and
the number of nodes equals the number of edges, the only
possible configuration consists of cycles. Nodes with terminal
or branching structures cannot exist, as they would necessitate
more or fewer than two edges per node, which contradicts the
stated conditions. Next, we show that each cycle in the graph
must contain an even number of nodes by proceeding with a
proof by contradiction. Assume that a cycle has an odd number
of nodes. If we start at a node and follow the cycle, the first
edge is red, the second edge is blue, and so on, alternating
between colors. However, when we reach the end of the cycle
(i.e., come back to the starting node), since the number of
nodes (and thus edges) in the cycle is odd, the color of the
last edge must be the same as the color of the first edge. This
contradicts our condition that each node must be connected
to edges of two different colors. Therefore, each cycle has an
even number of nodes. Since each cycle has an even number
of nodes, we are able to traverse through the nodes in each
cycle, applying alternating colors as we progress, which is also
the algorithm to partition the set.

Taking Fig. 11 as an example, we traverse the circles by
order of (0,1,2,3,5,4,B,A,8,9), (6,7,C,D), and (E,F). We put
(0,2,5,B,8,6,C,E) to the first set, and other nodes to the second
set.

We formally state the algorithm we used in the proof of
Lemma 1 in Algorithm 1. In the algorithm, the set partition
decision for each input i ∈ R is denoted by d0[i] ∈ {0, 1}. For
each input i, if d0[i] = 0, we switch it to the upper output, i.e.,
output 2⌊i/2⌋. Otherwise, d0[i] = 1, and we switch input i
to the lower output, i.e., output 2⌊i/2⌋+1. Given the routing
decision at stage 0, the original request pattern, denoted by
R, can be represented using the input indices of stage 1,
which are symbolized as R1. Similarly, when the routing
decisions for the first n−1 stages are established, the original
request pattern R can be represented by the input indices of
stage n, which are denoted as Rn. In addition, we use dn

to denote the routing decision for stage n. Taking Fig. 11
for an example, if we switch inputs (0, 2, 5, B, 8, 6, C,E)
to the upper outputs, the original request pattern R =
{(0, 9), (1, 2), (3, 5), (4, B), (6, D)(7, C), (8, A), (E,F)} can
be represented by the input indexes of stage 1 as R1 =
{(0, C)(1, 8)(2, 9)(3, E)(4, D)(5, A)(6, B)(7, F)}, as shown
in Fig. 12.

Next, we focus on stage n > 0, where the request pattern
Rn is represented by the input indexes of stage n. We have
the following Lemma.

Lemma 2. For any request pattern Rn consisting of N paired
inputs, where one input from each pair belongs to [N/2] and
the other to [N] \ [N/2], we can partition the inputs into two
sets such that:

• for each i ∈ [N/2], input 2i and input 2i + 1 are in
different sets,

• each pair of inputs from Rn is contained within the same
set.

Proof. The proof is similar to that of Lemma 1. The basic
idea is to construct a constraint graph that has N vertex.

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 9

Algorithm 2: switchAlg+ (for stage n, n > 0)
Input: Rn, represented by inputs of stage n
Output: dn, routing decisions for stage n > 0
Initialization: dn[j]← NaN for each input j in Rn

// constructing a constraint graph
1 foreach input i in Rn do
2 if i mod 2 == 0 then
3 add an edge between node i and node i+ 1;
4 end
5 end
6 foreach request pair (i, j) in Rn do
7 add an edge between node i and node j;
8 end

// traversing nodes in cycles
9 foreach cycle in the graph do

10 start← a randomly selected node in the cycle;
11 i⋆ ← start;
12 j⋆ ← j such that (i⋆, j) ∈ Rn;
13 dn[i

⋆],dn[j
⋆]← 0;

14 d⋆ ← 0 ; /* decision for the latest
traversed two paired inputs */

15 repeat
16 if j⋆ mod 2 == 0 then
17 i⋆ = j⋆ + 1;
18 else
19 i⋆ = j⋆ − 1;
20 end
21 j⋆ ← j such that (i⋆, j) ∈ Rn;
22 dn[i

⋆],dn[j
⋆]← |1− d⋆|;

23 d⋆ ← |1− d⋆|;
24 until i⋆ == start;
25 end

26 return dn;

There is an edge of red color between nodes 2i and 2i + 1
for each i ∈ [N/2]. In addition, for each pair of inputs in
the request pattern, we add an edge of blue color between
them. For example, let N = 16 and the request pattern
R1 is {(0, C)(1, 8)(2, 9)(3, E)(4, D)(5, A)(6, B)(7, F)}, the
constraint graph is as follows:

0 1 4 52 3 6 7

8 9 C EA B D F

Fig. 12: Type II constraint graph for Stage n, n > 0.

Then, we can prove the graph contains only cycles, each of
which contains a number of nodes that is a multiple of four.
Assume a cycle has x blue edges, where one end of each edge
is in [N/2] and the other end is in [N] \ [N/2]. We have the
cycle contains x nodes in [N/2] and x nodes in [N] \ [N/2],
resulting title 2x nodes in the cycle. Since inputs 2i and 2i+1
are in the same cycle, we have that the cycle has 2y inputs in
[N/2], where y is a positive integer. That is, the number of
nodes in each cycle is 2x = 2 · 2 · y = 4y.

Algorithm 3: Routing Algorithm
Input: number of inputs: N , request pattern: R
Output: routing decision D = {d0, . . . ,dlog(N)−1}
Initialization: Rn ← ∅ for n ∈ {0, 1, . . . , log(N)− 1}
// routing decision for stage 0

1 d0 = switchAlg0(R);
2 foreach (i, j) in R do
3 i⋆ ← 2⌊i/2⌋+ d0[i];
4 j⋆ ← 2⌊j/2⌋+ d0[j];
5 R1 ←

R1 ∪ (Sr(j
⋆, log(N), N), Sr(i

⋆, log(N), N));
6 end

// routing decision for stage n > 0
7 for n ∈ {1, 2 · · · log(N)− 1} do

// 2n−1 subnetworks at stage n
8 if n == 1 then
9 d1 ← switchAlg+(R1);

10 else
11 for k ∈ {0, 1 · · · , 2n−1 − 1} do
12 for (i, j) ∈ Rn do
13 if

⌊
i
2

⌋
mod 2n−1 == k then

14 Add pair (i, j) to Rk
n;

15 end
16 end
17 dk

n ← switchAlg+(Rk
n) ;

18 dn ← dn ∪ dk
n;

19 end
20 end

// switching to stage n+ 1
21 foreach (i, j) in Rn do
22 i⋆ ← 2⌊i/2⌋+ dn[i];
23 j⋆ ← 2⌊j/2⌋+ dn[j];
24 Rn+1 ←

Rn+1 ∪ (Sl(i
⋆, n+ 1, N), Sl(j

⋆, n+ 1, N));
25 end
26 end
27 Return D;

Since the graph contains only cycles and each of which
contains a number of nodes that is a multiple of four, we
are able to traverse through the nodes in each cycle, starting
with a random node, with the initial step moving along the
direction of the blue edge. As we progress, we assign the first
two consecutive nodes connected by a blue edge to Set A and
the subsequent two nodes to Set B. We continue this pattern,
alternating between Set A and Set B. In this way, input 2i
and input 2i+ 1 are in different sets, and each pair of inputs
from Rn is contained within the same set, which proves the
Lemma.

Taking Fig. 12 as an example, we start at 0
and traverse the constraint graph by the order of
(0,C,D,4,5,A,B,6,7,F,E,3,2,9,8,1) and put (0-C,5-A,7-F,2-
9) to the set A and others to the set B.

Next, we show the QMSN network is non-blocking and
design a switching network based on Lemma 1 and Lemma 2.

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 10

BSAs

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Stage 0 Stage 1 Stage 2 Stage 3

0000

0001

0000

0001

0000

0001

0000

0001

0100

0101

0100

0101

0010 0010

0011 0011

1000

1001

1000

1001

1000

1001

1000

1001

1010

1011

1010

1011

1100

1101

1100

1101

a. Routing Decisions for Stage 0 and Stage 1 b. Two disjoint subnetworks at Stage 2

0010

0011

0100

0101

0110

0111

0110

0111

1010

1011

1100

1101

1110

1111

1110

1111

0010

0011

0110

0111

1010

1011

1110

1111

0100

0101

0110

0111

1100

1101

1110

1111

Stage 2 Stage 3 BSAs

Fig. 13: An example of the designed routing algorithm for a 16-input QMSN

Theorem 2. For each request pattern R with N paired inputs,
the designed N -input QMSN is nonblocking.

Proof. Based on Lemma 1, we can partition [N] into two sets,
Set 1 and Set 2, such that for each pair (i, j) ∈ R, i and j
are situated in different sets. Furthermore, input 2i and input
2i + 1 reside in different sets for each i ∈ [N/2]. For each
i ∈ [N], we define i′ ≜ 2⌊i/2⌋. For stage 0, each input i in the
first set is switched to output i′, and each input i in the second
set is switched to output i′ + 1. No contention occurs at this
stage since any potential contention could only occur between
inputs 2i and 2i+1, and these inputs are allocated to different
sets (switch to different outputs). In addition, because inputs
in each pair are in different sets, for each pair in R, one QPU
of the pair is switched to an even output connecting to one of
the inputs in [N/2] of stage 1 and the other one is switched to
an odd output connecting to one of the inputs in [N]\[N/2] of
stage 1. For instance, consider the request pattern depicted in
Fig. 11. The two sets would be {0, 2, 5, 6, 8, B, C,E} directed
to even outputs and {1, 3, 4, 7, 9, A,D, F} directed to odd
outputs, as the switch configurations of stage 0 in Fig. 13.a.

Next, we can ignore stage 0 and focus on the prob-
lem of routing the paired inputs of stage 1 to the BSAs,
where one input of each pair is in [N/2] and the other
one is in [N] \ [N/2]. For example, the original re-
quest pairs in Fig. 13.a connect to input pairs R1 =
{(0, C), (1, 8), (2, 9), (3, E), (4, D), (5, A), (6, B), (7, F)} in
stage 1, and R1 is the request pattern represented by input
index in stage 1. Based on Lemma 2, we can partition the
inputs of stage 1 into two sets such that 2i and 2i + 1
are in separate sets and paired inputs (i, j) ∈ R1 are
in the same sets. Taking Fig. 13.a as an example, using
the constraint graph shown in Fig. 12, we partition the
inputs of stage 1 into Set A={(0, C), (2, 9), (5, A), (7, F)}
and Set B={(1, 8), (3, E), (4, D), (6, B)} labeled by red color
and blue color, respectively. Then, the inputs in set A and
set B are switched to outputs {2i, i ∈ [2/N]} and outputs
{2i + 1|i ∈ [N/2]} in stage 1, respectively. The last digit of

these output indices in binary form for set A and set B is
0 and 1, respectively. That is, inputs in Set A are connected
exclusively to switches whose i-th least significant bit (LSB)
is 0 at stage i (depicted as red switches), e.g., red switches in
stage 2 have their 2nd LSB set to 0. The topology of the red
switches after stage 1 corresponding with set A is shown in
Fig. 13.b, which is the same as the last log(N/2) − 1 stages
of N/2-input QMSN, e.g., Fig. 10 without Stage 0. Similarly,
inputs in set B are only connected to switches with the i-th
LSB is 1 at stage i, and the topology of the switches and BSAs
corresponding with set B is shown in Fig. 13.b, which is the
same as the last log(N/1) − 1 stages of N/2-input QMSN.
That is, the problem is divided into two smaller problems with
N/2 inputs, where one input of each request pair is in the
first N/4 inputs, and the other one is in the last N/4 inputs.
For each of the two N/2-input networks with (log(N) − 2)
stages, we can construct a Type II constraint graph to get
the configuration of its switches in its first stage and get two
N/4-input networks each of (log(N) − 3) stages. Following
this method, we can get N/4 4-input networks at the end. In
each of the 4-input networks, which comprise two switches,
one input from every request pair connects the first switch,
while the other input connects to the last switch, which is
non-blocking. Therefore, each pair of QPUs can be routed to
a unique BSA, which proves the theorem. The approach for
deciding the switching configuration of the stages after the
first stage is formally stated in Algorithm 2.

The routing algorithm is similar to the process of the proof
of Theorem 2 and is formally stated in Algorithm 3. It takes
O(N) time steps for each stage, and the time complexity of
the routing algorithm is O(N log(N)).

Next, we analyze the success probability of each entangle-
ment generation attempt in QMSN. Parameters pd, pf , and pp
are defined the same as those for (1). We use pi to denote
the probability that a photon successfully traverses a 2×2
MZI switch, which is determined by the switch’s insertion
loss. For each pair of QPUs, their emitted photons must pass

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 11

through a total of 2 log2(N) switches. The probability that the
photons successfully pass through all the switches is given by
p
2 log2(N)
i . Then, the success probability of each entanglement

generation attempt, denoted by p′a, is

p′a = 0.5p2pp
2
fp

2 log2(N)
i pd. (9)

If we keep attempting for n times, the success probability of
generating at least one entangled pair, denoted by p′r(n), is

p′r(n) = 1− (1− p′a)
n. (10)

Since the entanglement generation in the switching network
does not involve entanglement swapping on the intermediate
QPUs. Let’s assume that in the generated shared qubit pairs,
the probabilities of bit flip and phase flip errors are indepen-
dent, denoted by pb and pϕ, respectively. We have that the
fidelity of the generated shared qubit pairs in the proposed
switching network, denoted by FQMSN , is

FQMSN = 1− (1− pb)(1− pϕ). (11)

The simplicity of QMSN, which doesn’t require entanglement
swapping on the intermediate QPUs, makes the protocol for
generating entanglement simpler compared to other static
quantum networks. A straightforward protocol for generating
entanglement in QMSN could be repeated attempts until
successful entanglement is achieved.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
switching network using parameters derived from real-world
experimental results. Simulation code is publicly available on
GitHub at https://github.com/yuliu3/QMSN.

A. Simulation Settings

We compare the switching network with the Beneš network
and line, ring, and grid topologies from the literature. In
switching networks, each QPU has a single communication
qubit, whereas in line, ring, and grid networks, QPUs can
have up to two, two, and four communication qubits with
corresponding photon collection modules. The implementation
of static networks is inherently more complex, necessitating
additional optical and electronic controls, along with photon
collection and coupling modules. Unlike quantum networks,
where throughput is a crucial performance index [23], [24],
distributed computing requires generating shared Bell states
according to the order of the corresponding remote gates in the
quantum circuit. Consequently, we adopt the average time for
Successful Entangled qubit pair Generation (SEG) as a perfor-
mance metric to evaluate the networks. There may be some
remote gates that can be performed simultaneously, and the
proposed switching network can generate the desired shared
Bell states simultaneously without introducing new problems.
Different request pairs in the static networks are competing for
the resources such as communication qubits and links, e.g., it
is impossible to generate shared Bell states between QPU 1
and QPU 3 and between QPU 2 and QPU 4 simultaneously
in Fig. 7.a. We investigate the scenario where request pairs

QMSN Benes Grid Ring Line

10 5

10 3

10 1

101

103

Av
er

ag
e

Ti
m

e
fo

r S
EG

Fig. 14: Average SEG time on
the QFT Circuit [46].

QMSN Benes Grid Ring Line

10 5

10 3

10 1

101

103

Av
er

ag
e

Ti
m

e
fo

r S
EG

Fig. 15: Average SEG time on
a circuit from [47].

arrive sequentially. This particular condition favors the static
topologies over the switching networks because the switching
network can accommodate N/2 simultaneous requests without
compromising the average time required for SEG. In contrast,
attempts to simultaneously generate multiple entangled pairs in
static topologies can lead to resource contention, consequently
increasing the average time required for SEG.

The Beneš network operates by treating the BSAs as outputs
and routing inputs that require a shared Bell state to the same
BSA. The Beneš network is adapted to have 2(log2(N)− 1)
stages, as the last stage is substituted with BSAs. We assume
that static networks use the protocol in [24] to generate shared
Bell states. Under the protocol, there are one, two, and up
to four routes between each pair of S-D QPUs in the line
network, ring network, and grid network, respectively. All
routes are simultaneously engaged in entanglement generation.
Based on Fig. 3 in [44], we assume the external phase of
the static networks lasts for 10−3s. From [20], the maximum
photon production rate γmax is 2 MHz. The propagation
latency of photons is omitted since the QPUs are placed
in close proximity. The internal phase duration for static
networks, typically in tens of microseconds [45], includes the
time taken for entanglement swapping plus communication
time, where the entanglement process swapping typically takes
tens of microseconds [45]. Assume that the duration of the
internal phase is negligible, as it favors the static networks
due to the absence of entanglement swapping on intermediate
processors (repeaters) in the switching networks.

B. Simulation Results

We first simulate a system comprising of 16 QPUs. Specif-
ically, we set the photon production rate γ as 1 Mhz and the
external phase duration time Te to be 1 ms. Let pi = 0.9
and pp = 0.04 [39], [40]. Additionally, from [20], we set
pf = 0.98, pd = 0.8, and ps = 0.9. To evaluate the
performance of the proposed QMSN, we conduct simulations
using the Quantum Fourier Transform (QFT) circuit [46]. In
this setup, 64 qubits are distributed across 8 QPUs, with each
QPU hosting 8 qubits. To minimize the number of remote gate
operations, we map the i-th qubit and the (63− i)-th qubit to
the same QPU, reducing the need for remote swap gates at the
circuit’s end. Given the symmetric nature of the QFT circuit,
this mapping strategy does not affect performance, allowing
us to assign the qubit pairs—i-th and (63 − i)-th qubits—to
QPUs arbitrarily. Fig. 14 presents a statistical summary of
the time for SEG across various network topologies. The
length of the bar signifies the average time taken for SEG,

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 12

1e-2 2e-2 3e-2 4e-2

e-1

e1

e3

e5

e7

Av
er

ag
e

Ti
m

e
fo

r S
EG

QMSN
Benes
Grid
Ring
Line

.06 .08 .10 .12 .14

2e-3

4e-3

6e-3

8e-3

1e-2
QMSN
Benes
Grid

pp

Fig. 16: SEG Time vs. pp.

0.5 0.6 0.7 0.8 0.9 1.0

e-2

e-1

e0

e1

e2

e3

Av
er

ag
e

Ti
m

e
fo

r S
EG

QMSN
Benes
Grid

pf

Fig. 17: SEG Time vs. pf .

0.70 0.75 0.80 0.85 0.90 0.95 1.00
e-3

e-2

e-1

Av
er

ag
e

Ti
m

e
fo

r S
EG

QMSN
Benes
Grid

pi

Fig. 18: SEG Time vs. pi.

3 4 5 6 7

e-2

e-1

e0

e1

e2

Av
er

ag
e

Ti
m

e
fo

r S
EG

QMSN
Benes
Grid

log(N)

Fig. 19: SEG Time vs. log(N).

while the red error bars indicate the range from minimum
to maximum times observed. The average time for SEG of
the Beneš, grid, ring, and line networks are 1.52×, 2.75×,
3.31e+01×, and 3.26e+03× of that in the proposed QMSN,
respectively. Next, we use the remote gate order of a real-
world quantum circuit from [47]. We first allocate the 16
logical qubits across 16 QPUs, where multiple physical qubits
within each QPU represent a single logical qubit for quantum
error correction. The remote CNOT gates are then generated
according to their order in the quantum circuit. Fig. 15 shows
that, in this scenario, the average time for SEG in the Beneš,
grid, ring, and line networks are 1.53×, 3.76×, 2.50e+01×,
and 3.33e+03× of that in QMSN, respectively.

Subsequently, we investigate the performance of the topolo-
gies with 32 QPUs, each hosting 4 qubits, under varying pp.
Other parameters are the same as those used for Fig. 14.
Fig. 16 demonstrates that the proposed switching network
consistently outperforms the baselines across all considered
pp values. Note that pp are typically less than 0.05 [40]. Due
to the significantly higher average time for SEG in the ring
and line networks compared to other networks, our subsequent
discussions will focus on comparing QMSN with the Beneš
network and the static grid network.

Next, we evaluate the time for SEG in a system with 16
QPUs across varying photon loss probabilities in the fiber,
i.e., pf . Other parameters remain the same as those used
for Fig. 14. A typical fiber loss value for 422 nm photons
emitted by Ba+ ions is 30 dB/km [16]. For fiber lengths
within the range of 5 m to 10 m, pf varies between 0.933
and 0.966. As depicted in Fig. 17, the proposed switching
network demonstrates a lower average time for SEG compared
to the Beneš and grid networks. Then, we investigate the
performance under different switch insertion losses, while
keeping all other parameters consistent with those utilized for
Fig. 14. As shown in Fig. 18, the time required for SEG in
the switching network is consistently less than that in the
static networks for all examined pi settings. Since there is
no switch in the static networks, the average time for SEG
of the grid network remains constant. According to [48], the
insertion loss for each MZI binary switch can be reduced to
less than 1 dB. The insertion loss can be further reduced
by refining the fabrication, optimizing the PIC design, and
utilizing resonant structures [31]. When the insertion loss is
1 dB, pi is around 0.8, resulting in the average time for
SEG of the grid network being 4.6 times that of QMSN.
Next, we evaluate the scalability of the proposed QMSN using
different N , where N represents the number of QPUs. All

other parameters are the same with those utilized for Fig. 14.
As shown in Fig. 19, as N increases, the average time of the
static grid network increases exponentially faster than that of
the switching networks.

The time required for SEG in the switching network is
consistently less than that in the static network topologies
for all the examined settings. Under certain settings, the grid
network may exhibit competitive performance, e.g., in Fig. 16,
when pp = 0.075, the time for SEG in the switching network
is only 14% less than that of the grid network. This can be
attributed to two reasons. Firstly, the parameter settings are
atypical. For instance, parameter pp is typically smaller 0.05.
Secondly, the comparison is not fair as QPUs in the grid
network have up to four communication qubits, while those
in the switching network are limited to just one. Should the
QPUs within the switching network be enhanced to support
multiple communication qubits, a consequent reduction in the
time for SEG could be anticipated.

VII. CONCLUSION

Distributed quantum computing is a promising paradigm
to increase the scale of quantum computing systems. In this
paper, we focus on designing networks to interconnect trapped
ion-based QPUs for the implementation of efficient DQC. We
show that static networks suffer from high system complexity
and deliver poor performance due to the low photon collection
and coupling efficiency experienced in real-world systems.
Therefore, we design a novel multistage switching network
dedicated to DQC. We prove that the proposed network is
nonblocking and design an efficient routing algorithm for
the proposed network. In addition, we conducted extensive
real-world data-driven simulations. Results show that the pro-
posed switching network significantly outperforms popular
baselines.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations
of computer science. Ieee, 1994, pp. 124–134.

[2] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum
approximate optimization algorithm: Performance, mechanism, and im-
plementation on near-term devices,” Physical Review X, vol. 10, no. 2,
p. 021067, 2020.

[3] H.-S. Zhong, Y.-H. Deng, J. Qin, H. Wang, M.-C. Chen, L.-C. Peng, Y.-
H. Luo, D. Wu, S.-Q. Gong, H. Su et al., “Phase-programmable gaussian
boson sampling using stimulated squeezed light,” Physical review letters,
vol. 127, no. 18, p. 180502, 2021.

[4] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum com-
puting for drug discovery,” IBM Journal of Research and Development,
vol. 62, no. 6, pp. 6–1, 2018.

IEEE/ACM TRANSACTIONS ON NETWORKING , VOL. 33, NO. 4, AUGUST 2025 13

[5] A. Morvan, B. Villalonga, X. Mi, S. Mandra, A. Bengtsson, P. Klimov,
Z. Chen, S. Hong, C. Erickson, I. Drozdov et al., “Phase transition in
random circuit sampling,” arXiv preprint arXiv:2304.11119, 2023.

[6] IBM. (2022, Nov.) Ibm unveils 400 qubit-plus quantum processor and
next-generation ibm quantum system two. IBM Newsroom. [Accessed:
Feb. 23, 2025]. [Online]. Available: https://newsroom.ibm.com/

[7] M. Mosca, “Cybersecurity in an era with quantum computers: Will we
be ready?” IEEE Security & Privacy, vol. 16, no. 5, pp. 38–41, 2018.

[8] Z. Yang, M. Zolanvari, and R. Jain, “A survey of important issues
in quantum computing and communications,” IEEE Communications
Surveys & Tutorials, vol. 25, no. 2, pp. 1059–1094, 2023.

[9] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,” Applied Physics
Reviews, vol. 6, no. 2, p. 021314, 2019.

[10] M. Caleffi, M. Amoretti, D. Ferrari, D. Cuomo, J. Illiano, A. Manzalini,
and A. S. Cacciapuoti, “Distributed quantum computing: a survey,” arXiv
preprint arXiv:2212.10609, 2022.

[11] Y. Mao, Y. Liu, and Y. Yang, “Qubit allocation for distributed quantum
computing,” in IEEE INFOCOM 2023 - IEEE Conference on Computer
Communications, 2023, pp. 1–10.

[12] P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen,
D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery
of remote entanglement on a quantum network,” Nature, vol. 558, no.
7709, pp. 268–273, 2018.

[13] J. P. Covey, H. Weinfurter, and H. Bernien, “Quantum networks with
neutral atom processing nodes,” arXiv preprint arXiv:2304.02088, 2023.

[14] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger,
S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn et al., “Quantum op-
timization using variational algorithms on near-term quantum devices,”
Quantum Science and Technology, vol. 3, no. 3, p. 030503, 2018.

[15] T. Harty, D. Allcock, C. J. Ballance, L. Guidoni, H. Janacek, N. Linke,
D. Stacey, and D. Lucas, “High-fidelity preparation, gates, memory, and
readout of a trapped-ion quantum bit,” Physical review letters, vol. 113,
no. 22, p. 220501, 2014.

[16] L. Stephenson, D. Nadlinger, B. Nichol, S. An, P. Drmota, T. Ballance,
K. Thirumalai, J. Goodwin, D. Lucas, and C. Ballance, “High-rate, high-
fidelity entanglement of qubits across an elementary quantum network,”
Physical review letters, vol. 124, no. 11, p. 110501, 2020.

[17] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini,
and G. Bianchi, “Quantum internet: Networking challenges in distributed
quantum computing,” IEEE Network, vol. 34, no. 1, pp. 137–143, 2020.

[18] D. Cuomo, M. Caleffi, K. Krsulich, F. Tramonto, G. Agliardi, E. Prati,
and A. S. Cacciapuoti, “Optimized compiler for distributed quantum
computing,” ACM Transactions on Quantum Computing, vol. 4, no. 2,
pp. 1–29, 2023.

[19] S. Krastanov, H. Raniwala, J. Holzgrafe, K. Jacobs, M. Lončar, M. J.
Reagor, and D. R. Englund, “Optically heralded entanglement of super-
conducting systems in quantum networks,” Physical Review Letters, vol.
127, no. 4, p. 040503, 2021.

[20] J. Hannegan, J. D. Siverns, J. Cassell, and Q. Quraishi, “Improving
entanglement generation rates in trapped-ion quantum networks using
nondestructive photon measurement and storage,” Physical Review A,
vol. 103, no. 5, p. 052433, 2021.

[21] Y. Zhao, G. Zhao, and C. Qiao, “E2e fidelity aware routing and
purification for throughput maximization in quantum networks,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022, pp. 480–489.

[22] A. Farahbakhsh and C. Feng, “Opportunistic routing in quantum
networks,” in IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 2022, pp. 490–499.

[23] S. Shi and C. Qian, “Concurrent entanglement routing for quantum
networks: Model and designs,” in Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, 2020, pp. 62–75.

[24] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. En-
glund, and S. Guha, “Routing entanglement in the quantum internet,”
npj Quantum Information, vol. 5, no. 1, p. 25, 2019.

[25] S. Pouryousef, N. K. Panigrahy, and D. Towsley, “A quantum over-
lay network for efficient entanglement distribution,” arXiv preprint
arXiv:2212.01694, 2022.

[26] Y. Mao, Y. Liu, and Y. Yang, “Probability-aware qubit-to-processor
mapping in distributed quantum computing,” in Proceedings of
the 1st Workshop on Quantum Networks and Distributed Quantum
Computing, ser. QuNet ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 51–56. [Online]. Available:
https://doi.org/10.1145/3610251.3610554

[27] V. Benes, “Heuristic remarks and mathematical problems regarding
theory of connecting systems,” Bell System Technical Journal, vol. 41,
no. 4, pp. 1201–+, 1962.

[28] D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Transactions on computers, vol. 100, no. 12, pp. 1145–1155, 1975.

[29] L. R. Goke and G. J. Lipovski, “Banyan networks for partitioning
multiprocessor systems,” in Proceedings of the 1st annual symposium
on Computer architecture, 1973, pp. 21–28.

[30] L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with
trapped ions,” Reviews of Modern Physics, vol. 82, no. 2, p. 1209, 2010.

[31] M. Dong, M. Zimmermann, D. Heim, H. Choi, G. Clark, A. J. Leenheer,
K. J. Palm, A. Witte, D. Dominguez, G. Gilbert et al., “Programmable
photonic integrated meshes for modular generation of optical entangle-
ment links,” npj Quantum Information, vol. 9, no. 1, p. 42, 2023.

[32] S. Bartolucci, P. Birchall, D. Bonneau, H. Cable, M. Gimeno-Segovia,
K. Kieling, N. Nickerson, T. Rudolph, and C. Sparrow, “Switch net-
works for photonic fusion-based quantum computing,” arXiv preprint
arXiv:2109.13760, 2021.

[33] S. Niu and A. Todri-Sanial, “Multi-programming cross platform
benchmarking for quantum computing hardware,” arXiv preprint
arXiv:2206.03144, 2022.

[34] A. Burrell, D. Szwer, S. Webster, and D. Lucas, “Scalable simultaneous
multiqubit readout with 99. 99% single-shot fidelity,” Physical Review
A, vol. 81, no. 4, p. 040302, 2010.

[35] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith,
S. Glancy, K. Coakley, E. Knill, D. Leibfried et al., “High-fidelity
universal gate set for be 9+ ion qubits,” Physical review letters, vol.
117, no. 6, p. 060505, 2016.

[36] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical review A, vol. 52, no. 5, p. 3457,
1995.

[37] S. Blinov, B. Wu, and C. Monroe, “Comparison of cloud-based ion trap
and superconducting quantum computer architectures,” AVS Quantum
Science, vol. 3, no. 3, p. 033801, 2021.

[38] S. Sheldon, “Quantum computing with noisy qubits,” in Frontiers of
Engineering: Reports on Leading-Edge Engineering from the 2018
Symposium. Lexington, Massachusetts: National Academies Press,
2019, pp. 13–17.

[39] G. Shu, N. Kurz, M. Dietrich, and B. Blinov, “Efficient fluorescence col-
lection from trapped ions with an integrated spherical mirror,” Physical
Review A, vol. 81, no. 4, p. 042321, 2010.

[40] C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd,
“Design and analysis of communication protocols for quantum repeater
networks,” New Journal of Physics, vol. 18, no. 8, p. 083015, 2016.

[41] A. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J.
Wineland, “Efficient fiber optic detection of trapped ion fluorescence,”
Physical review letters, vol. 105, no. 2, p. 023001, 2010.

[42] W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in
quantum switches: Protocol design and stability analysis,” arXiv preprint
arXiv:2110.04116, 2021.

[43] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge university press, 2010.

[44] P. Drmota, D. Main, D. Nadlinger, B. Nichol, M. Weber, E. Ainley,
A. Agrawal, R. Srinivas, G. Araneda, C. Ballance et al., “Robust
quantum memory in a trapped-ion quantum network node,” Physical
Review Letters, vol. 130, no. 9, p. 090803, 2023.

[45] P. Gerbert and F. Ruess, “The next decade in quantum computing
and how to play,” Boston Consulting Group, Oct 2018, accessed: Feb.
24, 2025. [Online]. Available: https://www.bcg.com/publications/2018/
next-decade-quantum-computing-how-play

[46] various authors, Qiskit Textbook, Quantum Fourier Transform. Github,
2023. [Online]. Available: https://github.com/Qiskit/textbook

[47] L. Burgholzer, “Mqt qmap - a tool for quantum circuit compilation,”
Available at: https://github.com/cda-tum/mqt-qmap, 07 2023, accessed:
2023-07-30.

[48] K. F. Lee and G. S. Kanter, “Low-loss high-speed c-band fiber-optic
switch suitable for quantum signals,” IEEE Photonics Technology Let-
ters, vol. 31, no. 9, pp. 705–708, 2019.

