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Abstract—Quantum computing has the potential to solve compli-
cated problems that are impossible for classical servers. Neverthe-
less, the applications of current quantum processors are restricted
by their limited qubit capacity. Distributed Quantum Computing
(DQC) is promising to scale up the computing capability by
interconnecting quantum processors and performing computing
collectively. The network interconnecting quantum processors can
impact the efficiency of DQC. In this paper, we analyze and
compare the performance of various interconnection networks for
DQC. First, we meticulously derive the success probabilities of
entanglement generation and the fidelity of shared Bell states
generated within three typical static networks: line, ring, and
grid. In addition, we propose a switching network with a minimal
number of switch stages and evaluate its performance in terms of
probability and fidelity. Moreover, we conduct extensive simulations
based on real-world parameters to compare the static and switching
networks, and the results reveal that the switching network
performs better and is more scalable.

I. INTRODUCTION

Quantum computing has demonstrated significant promise in
addressing critical computational challenges, e.g., large inte-
ger factorization, that prove highly complex for conventional
computing systems [1]. Thus, the development of proficient
quantum computing systems has garnered attention from both
industrial and academic sectors, such as IBM (Osprey) and
Google (Sycamore) [2]. The market size of the global quantum
computing industry is projected to surpass 4.456 billion USD
by the year 2030 [3]. Despite the considerable potential and
rapid development of quantum computing, there remains a sig-
nificant journey ahead before quantum computers can effectively
tackle practical problems. One pressing technological challenge
revolves around the restricted number of qubits within a singular
processor, constraining the scope of problems quantum proces-
sors can effectively tackle. For instance, the decryption of RSA-
2048 encryption demands millions of qubits, i.e., the fundamen-
tal components of quantum computing akin to classical bits,
surpassing the computational capacity of contemporary quantum
systems equipped with hundreds or thousands of qubits.

While developing a single Quantum Processor Unit (QPU)
with a sufficient number of qubits presents significant chal-
lenges, i.e., the pronounced decrease in coherence time observed
in superconducting-based quantum systems when scaling up
the qubit count [4], numerous experiments have demonstrated
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the viability of interconnecting multiple mild-scale quantum
processors across various platforms through quantum commu-
nication methodologies [5]–[7]. This leads to the advent of
distributed quantum computing (DQC), which offers the poten-
tial to expand quantum computing systems by interconnecting
QPUs and performing computing collaboratively. In particular,
shared entangled qubit pairs between QPUs generated within
the interconnection network are exploited to perform remote
quantum gate operations applied to qubits on distinct QPUs.

Under the DQC paradigm, the network interconnecting QPUs
may impact the computing efficiency [8] via the success prob-
ability of entanglement generation between two randomly se-
lected QPUs and the resulting entanglement fidelity. There are
two ways to interconnect QPUs: static connection networks and
switching networks. Static interconnection networks are fixed,
e.g., mesh, grid, ring, and line networks, where static links
between QPUs allow shared entangled qubit pair generation
between them. In these static networks, entanglement swapping
is required to generate shared entangled qubit pairs between
two non-directed QPUs. Despite the success of static networks
in quantum internet [9], [10], they are not without their limita-
tions. As the network scale increases, static networks may lead
to performance degradation in terms of both probability and
fertility due to error accumulation via entanglement swapping.
On the other hand, QPUs can be interconnected by switching
networks using optimal switches [11], which can offer dy-
namic connections between QPUs by configuring switch states.
However, the insertion loss of optimal switches will lead to
photon loss during the entanglement generation process and
affect the success probability of entanglement generation. In
particular, as the number of switch stages increases, the suc-
cess probability of entanglement generation will decrease, and
computing efficiency will decrease. Existing works mainly focus
on feasibility analysis or performance improvement of static
or switching quantum computing networks without considering
potential risks of performance degradation when the network
scale increases. Consequently, analyzing and comparing the
performance of various interconnection networks for DQC holds
significant value.

Hence, in this paper, we first quantitatively analyze the perfor-
mance of three popular static network topologies for DQC, i.e.,
line, ring, and grid, regarding the network scalability. Specifi-
cally, we calculate the closed-form average success probability
of entanglement generation between two randomly selected
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Fig. 1: Herald Entanglement Generation.

QPUs, along with the closed-form average entanglement fidelity,
within the three static networks. In addition, we construct a
multistage switching network employing optical Mach-Zehnder
Interferometer (MZI) switches for DQC, with a minimal number
of switch stages. We also show the success probability of
entanglement generation and the resulting entanglement fidelity
in the proposed switching network. Furthermore, we conduct
extensive comparisons between static and switching quantum
networks, evaluating them in terms of both probability and
fidelity based on real-world parameters from experiments. The
outcomes indicate that the switching quantum network exhibits
better performance and scalability than static networks.

II. PRELIMINARIES

A. Remote Quantum Gate

The DQC paradigm promises great potential for quantum
computing with increased qubit capacity. However, it also poses
the challenge of executing gate operations on qubits located in
separate QPUs, namely remote gates. Since all quantum circuits
can be implemented using single-quit gates and two-qubit CNOT
gates [12], our discussion will focus on the implementation of
remote two-qubit CNOT gates. Figure 2.b in [8] depicts the
circuit for implementing a remote CNOT gate on two qubits
located in different QPUs.

B. Herald Entanglement Generation

Since the remote gate on qubits in two QPUs necessitates a
pair of shared entangled qubits, we will give a brief introduction
to the generation of entanglement between two communication
qubits in different QPUs. Since trapped ion quantum computers
offer advantages such as high quantum volume, long coherence
time, high gate fidelity, and extensive qubit connectivity [13],
we will employ the trapped ion here as an example of qubits
to elucidate the detailed entanglement generation process, as
shown in Figure 1. The Bell State Analyzer (BSA) is a quantum
component for detecting the entanglement between qubits. The
protocol begins with split laser pulses from the same source
simultaneously exciting qubit A in QPU1 and qubit B in
QPU2. The successful excitation leads to the generation of two
entangled ion-photon pairs, i.e. ion A and photon A, ion B
and photon B. These photons are then collected and coupled
into fibers directed towards the BSA. After detecting the two
photons in the BSA, it will determine if their pattern matches
one of the two specific patterns that indicate successful Bell
state entanglement, out of the four equally probable patterns. In
other words, the probability of a successful Bell state generation
is 0.5, given that the two photons are detected by the BSA.
Once the expected pattern is detected, the BSA would send a
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Fig. 2: Examples of Static and Switching Networks.

TABLE I: Notations

Definition Notation

Prob. of successful photon generation, collection, and coupling pp
Prob. of a photon successfully traversing the fiber pf
Prob. of BSA successfully detecting two photons pd
Success prob. of Bell pair generation per attempt on each link pa
Duration of the external phase Te

Maximum photon production rate γmax

Maximum entanglement generation attempts per slot ne

Success prob. of Bell pair generation on each link along a route pe
Success prob. of entanglement swapping pd
Success Prob. of Bell pair generation between S-D QPUs per slot pr
Average success prob. of Bell pair generation between S-D QPUs p̄r
Prob. that each qubit of a Bell pair will flip pb

confirmation signal to the QPUs to proceed with the remote
gate operations. Otherwise, the BSA would prompt for another
entanglement attempt with a retry signal.

We use pp to denote the probability that every time we excite
an ion, the entangled ion-photon pair is generated successfully,
and the photon is successfully collected and coupled into the
fiber. The probability of a photon successfully traversing the
fiber and reaching the BSA is represented as pf . The overall
efficiency of the BSA is quantified by pd, reflecting the chance
that the BSA will successfully identify the photon pairs. The
aggregate success rate for each entanglement attempt is denoted
as pa, as follows:

pa = 0.5 · p2pp2fpd. (1)

C. Static and Switching Networks

There are two ways to establish interconnections between
QPUs: direct connection networks (a.k.a. static networks) and
switching networking, as shown in Figure 2. Direct connection
networks involve positioning a BSA at the midpoint of each
link, as seen in the line network example in Figure 2.a. The
second way to interconnect QPUs and BSAs is using optical
MZI switches [11], as shown in Figure 2.b, where we use
switches to route the photons generated by the QPUs requesting
a shared Bell state to the BSA.

III. PERFORMANCE ANALYSIS OF STATIC NETWORKS

In this section, we delve into an analysis of the performance of
static networks as employed in quantum internet. In particular,
important notations are listed in Table I.

A. Static Networks

In the context of quantum internet [9], [10], a prevalent
method for establishing interconnections between QPUs is
through the creation of static links between them. This pro-
cess involves placing a BSA at the midpoint of each link, as



illustrated in the line network example depicted in Figure 2.a.
Given that mesh topologies, requiring (N − 1)! links and N
collection modules per QPU, lack essential scalability, non-mesh
designs such as line, grid, or ring networks are preferred in
such static networks. In these networks, entanglement swapping
plays a pivotal role in facilitating the generation of shared Bell
states between indirectly linked QPUs. A typical shortest-path-
based entanglement routing protocol [9], [10] for generating
a shared Bell state between any two selected distinct QPUs,
i.e., Source-Destination (S-D) QPUs, in the static topology,
is as follows. First, find the shortest path route between the
S-D QPUs Then, we will perform entanglement generation
along this route. In particular, the system operates in slotted
time, where each time slot must be shorter than the coherence
time of the qubits. Each time slot comprises two phases: the
external and internal phases. Then, in the external phase, each
link along the route independently attempts to generate shared
entangled pairs using the protocol outlined in Section II-B. Let
Te be the duration of the external phase, and γmax be the
maximum photon production rate of each QPU for entanglement
generation [14]. Therefore, the maximum number of link-level
entanglement generation attempts during the external phase is
ne ≜ Te · γmax. If shared Bell states are successfully generated
for all links along the route, we then perform entanglement
swapping on each intermediate QPU on the route during the
internal phase.

B. Success Probability Analysis
First, we analyze the probability of successfully generating

a shared Bell state on a route with N links between the S-
D QPUs within a given time slot, denoted by pr(N). Let pe
represent the probability of successfully generating a shared
Bell state on a link during the external phase, and ps denote
the success probability of the entanglement swapping process
at each intermediate QPU. Since there are N links and N − 1
intermediate QPUs in the route between the S-D QPUs, the
success entanglement generation probability at each time slot,
denoted by pr(N), is as follows:

pr(N) = (pe)
Nps

N−1. (2)

Here, pe = 1 − (1 − pa)
ne , where pa from (1) represents the

success probability of each entanglement generation attempt.
Next, we derive the average probability of successfully gener-

ating a shared Bell state between two randomly selected QPUs
in three typical static networks: line, ring, and grid.
Theorem 1. The average probability of successfully generating
a shared Bell state between two randomly selected QPUs at
each time slot, denoted by p̄r, in line, ring, and grid networks
are:
• Line network with N QPUs

p̄r =
2pe

(N − 1)(1− peps)
− 2pe[1− (peps)

N ]

N(N − 1)(1− peps)2.
(3)

• Ring network with N QPUs

p̄r =

 2pe[1−(peps)
N−1

2 ]
(N−1)(1−peps)

, if N is odd;
pe[2−(peps)

N
2

−1
(1+peps)]

(N−1)(1−peps)
, if N is even.

(4)

• N1 by N2 grid network with N ≜ N1N2 QPUs

p̄r =
4pe

(N − 1)(1− peps)2
+

4p2eps[1− (peps)
N1 ][1− (peps)

N2 ]

N(N − 1)(1− peps)4

− 2pe(1 + peps)[1− (peps)
N1 ]

N1(N − 1)(1− peps)3
− 2pe(1 + peps)[1− (peps)

N2 ]

N2(N − 1)(1− peps)3
.

(5)

Proof. Under the line network, we have

p̄r =

N−1∑
k=1

(N − k) · pr(k)
C(N, 2)

= 2pe

N−1∑
k=1

(N − k)(peps)
k−1

N · (N − 1)

=
2pe

N − 1

∞∑
k=1

(peps)
k−1 − 2pe(1− (peps)

N )

N(N − 1)

∞∑
k=1

k(peps)
k−1

(a)
=

2pe
(N − 1)(1− peps)

− 2pe[1− (peps)
N ]

N(N − 1)(1− peps)2
,

where C(N, 2) is the combination formula, and equation (a)
holds because

∑∞
k=1 x

k−1 = 1/1− x and
∑∞

k=1 kx
k−1 =

1/(1− x)2.
Under the ring network, the main idea of calculating (4) is as

follows.

p̄r =

 N
C(N,2)

∑N−1
2

k=1 pr(k), if N is odd;
N

C(N,2)

∑N
2
−1

k=1 pr(k) +
N

2C(N,2)
pr(

N
2
), if N is even.

Then, by exploiting the finite geometric series formula, we can
obtain (4).

Under the N1 by N2 grid network (N = N1N2), we have
p̄r = 2

C(N,2)

∑N2−1
i=1

∑N1−1
j=1 (N2 − i) · (N1 − j) · pr(i + j) +

N2

C(N,2)

∑N1−1
j=1 (N1− j) ·pr(j)+ N1

C(N,2)

∑N2−1
i=1 (N2− i) ·pr(i).

Then, by exploiting the Taylor series, we can get (5). The
detailed proof is omitted due to space limitations.

C. Bit Flip Errors and Fidelity Analysis

Qubits may experience bit flip errors [15] caused by quantum
logic gate operations such as CNOT gate in the entanglement
swapping process. Thus, we need to analyze the “closeness” of
the obtained and expected states, i.e., the fidelity of the generated
state.

During the external phase, we want to generate the shared
qubit pair |Φ+⟩ = |00⟩+|11⟩

2 on each link along the route
between the S-D QPUs. If the first qubit of a Bell pair |Φ+⟩
experiences a bit flip error, the state of the qubit pair changes to
|Ψ+⟩ = |01⟩+|10⟩

2 , which is not our expected one. Assuming
each qubit of a Bell pair will flip independently with the
same probability pb [1], the density matrix of the generated
qubit pair will be ρ = (p2b + (1 − pb)

2)|Φ+⟩⟨Φ+| + 2pb(1 −
pb)|Ψ+⟩⟨Ψ+| = F |Φ+⟩⟨Φ+|+(1−F )|Ψ+⟩⟨Ψ+|, and its fidelity
is F = p2b + (1− pb)

2.
Next, we consider the entanglement-swapping process during

the internal phase. If the states of generated Bell pairs over two
adjacent links are both ideal |Φ+⟩, the final shared Bell state
after an entanglement-swapping process on the intermediate

QPU is the expected |Φ+⟩, i.e., |Φ+⟩ ⊗ |Φ+⟩
entg-swap
−−−−−→ |Φ+⟩.

But considering the bit flip errors, the state of each generated
Bell pair may be |Ψ+⟩ rather than |Φ+⟩. Thus, it is necessary



to consider the following two cases further. (1) If the states
of generated Bell pairs over two adjacent links are both |Ψ+⟩,
the final shared Bell state after entanglement swapping is still

the expected |Φ+⟩, i.e., |Ψ+⟩⊗ |Ψ+⟩
entg-swap
−−−−−→ |Φ+⟩. (2) If one

state of generated Bell pairs over two adjacent links is |Φ+⟩ and
the other is |Ψ+⟩, the final shared Bell state after entanglement

swapping is |Ψ+⟩, i.e., |Φ+⟩ ⊗ |Ψ+⟩
entg-swap
−−−−−→ |Ψ+⟩ and

|Ψ+⟩ ⊗ |Φ+⟩
entg-swap
−−−−−→ |Ψ+⟩.

If the fidelity of the generated Bell pairs over two adjacent
links are respectively FA and FB , the fidelity of the final shared
Bell state after entanglement swapping is

Fnew = FA · FB + (1− FA) · (1− FB). (6)

For quantitative analysis, we assume the fidelity of all the Bell
pairs generated over each link in the static network (without any
purification) is identical, noted as F , and their density matrix
is ρ = F |Φ+⟩⟨Φ+| + (1 − F )|Ψ+⟩⟨Ψ+|. To reveal the fidelity
of the generated shared Bell state between the S-D QPUs with
N−1 intermediate QPUs, noted as fN , we first show Lemma 1.

Lemma 1. The order of each entanglement swapping process
over the intermediate QPUs does NOT impact the final shared
Bell state between the S-D QPUs.

The proof is omitted due to space limitations. The main idea
of the proof is to employ mathematical induction. Based on
Lemma 1, we perform entanglement swapping on each interme-
diate QPU following the order from source to destination along
the route and compute the fidelity of the resulting shared Bell
state between the S-D QPUs of this route, i.e., fN . According
to (6), we can obtain fN = F · fN−1 + (1− F ) · (1− fN−1).
Solving this recursion formula, we can reach the conclusion that

fN = 2N−1 · (F − 1

2
)N +

1

2
.

Based on it, we can prove the average fidelity of the shared Bell
generated between two randomly selected QPUs.

Theorem 2. The average fidelity of the successfully generated
shared Bell state between two randomly selected QPUs at each
time slot, denoted by F̄ , in line, ring, and grid networks are:
• Line network with N QPUs

F̄ =
2F − 1

2(N − 1)(1− F )
− (2F − 1)[1− (2F − 1)N ]

4N(N − 1)(1− F )2
+

1

2

• Ring network with N QPUs

F̄ =

 (2F−1)[1−(2F−1)
N−1

2 ]
2(N−1)(1−F )

+ 1
2
, if N is odd;

(2F−1)[1−F (2F−1)
N
2

−1
]

2(N−1)(1−F )
+ 1

2
, if N is even;

• N1 by N2 grid network with N ≜ N1N2 QPUs

F̄ =
2F − 1

2(N − 1)(1− F )2
−

∑
k∈{N1,N2}

F (2F − 1)[1− (2F − 1)k]

4k(N − 1)(1− F )3

+
(2F − 1)2[1− (2F − 1)N1 ][1− (2F − 1)N2 ]

8N(N − 1)(1− F )4
+

1

2
.

The proof of Theorem 2 is omitted due to space limitations.
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Fig. 3: 8-input QTS.

IV. PERFORMANCE ANALYSIS OF SWITCHING NETWORKS

In this section, we design a switching network for DQC, and
analyze its performance.

A. Switching Network Design

We consider building a multistage switching network that
utilizes 2× 2 binary switches. Our goal is centered on creating
a network that interconnects (any two of the) N QPUs using
a single BSA, where each QPU has a singular output, and the
BSA has two inputs, as illustrated in Figure 1.

To switch any pair of QPUs to the BSA, we propose a
structure called Quantum Tree-Like Switching (QTS). Figure 3
shows an instance of an 8-input QTS. The N -input QTS consists
of log(N) stages of switches. In particular, stage 0 and stage 1
have N/2 switches, and stage n > 1 has N/2n switches. The
two input ports of the i-th switch in each stage are labeled
by 2i and 2i+ 1. Similarly, The two output ports of the i-
th switch in each stage are labeled by 2i and 2i+ 1. Next,
we illustrate the interconnections between the QPUs, switching
stages, and BSAs. For any given i ∈ [N ], QPU i is connected
to input port i of stage 0. Then, the i-th output port of stage 0
is connected to the Sr (i,N)-th1 input port of stage 1. For
instance, in Figure 3, output ports 0, 1, · · · , 7 of stage 0 are
connected to input ports (Sr(0, 8), Sr(1, 8), · · · , Sr(7, 8)) =
(0, 4, 1, 5, 2, 6, 3, 7) of stage 1, respectively. For each stage
j ∈ {1, 2, · · · , log(N)−1}, the 2i-th output port connects to the
i-th input port of the next stage (or BSA stage if j = log(N)−1),
and the (2i+1)-th output port is idle and connects to nowhere.
For example, in Figure 3, output ports (0, 2, 4, 6) of stage 1 are
connected to input ports (0, 1, 2, 3) of stage 2, and output ports
(1, 3, 5, 7) of stage 1 are idle.

The routing algorithm for this QTS system is straightforward.
Assuming a QPU pair denoted as (i, j) is requesting a shared
Bell state. Then, for stage 0, if both i and j are either even
or odd, route one input to the upper output port of the corre-
sponding switch, and the other input to the lower output port
of the corresponding switch. Otherwise, route inputs i and j
to output ports i and j, respectively. For stage n > 0, route
each input to the upper output port of the switch. For example,
the routing of the QPU pair (1, 4) is represented by solid lines
in Figure 3. In stage 0, since 1 is odd and 4 is even, input
1 is routed to output port 1, and input 4 is routed to output
port 4. In stage 1 and 2, the inputs are all routed to the upper
output port in the corresponding switch. The dashed lines in

1Sr(i, N) is the right circular shift operation. For an integer i, Sr(i, N)
involves converting i into its binary representation of log(N) bits length, then
performing a right circular shift.



Figure 3 represent the routing decisions for the QPU pair (2, 6).
In stage 0, input 2 is routed to the output port 2, and input 6 is
routed to the output port 7 because they are both even numbers.
The inputs are then routed to the upper output ports, as in the
case above. Note that QTS can only support one pair of QPUs
requesting a shared Bell state at any given time. This limitation
of sequential entanglement generation is manageable for DQC
applications because quantum gate operations usually require
applying to qubits in a specific sequence. Consequently, we can
sequentially generate shared qubit pairs for remote gates. Next,
we show log2(N) is the minimum number of stages.

Theorem 3. To connect N = 2n QPUs with a BSA using 2× 2
switches such that any two inputs can be routed to the BSA, the
minimum number of switch stages required is log2(N).

The proof of Theorem 3 is omitted due to space limitations.
The main idea of the proof is to show that the network with
the fewest stages that can connect N QPUs with one BSA is a
tree network with log2(N)−1 stages, which cannot ensure that
every pair of inputs can be routed the BSA. In the QTS, the
connectivity pattern between the initial two stages (stages 0 and
1) is aligned with that of the Beneš network with 2 log2(N)−1
stages. Specifically, each switch in stage 0 is linked to one switch
on the upper side and another on the lower side in the subsequent
stage. The network structure after stage 1 is a tree network, that
is why we call it a tree-like network.
B. Performance Analysis

Next, we analyze the success probability of each entanglement
generation attempt in the proposed QTS. Let pi denote the
probability of a photon successfully passing through a switch,
determined by the switch’s insertion loss. For a QPU pair
requesting a shared Bell state, each of their emitted two photons
must traverse through log2(N) switches. The probability that
both photons successfully reach the BSA is given by p

2 log2(N)
i .

Thus, the success probability of each entanglement generation
attempt, denoted by p⋆a, is as follows:

p⋆a = 0.5p2pp
2
fp

2 log2(N)
i pd. (7)

The probability of successfully generating at least one entangled
pair over n attempts, denoted by p⋆r(n), is expressed as:

p⋆r(n) = 1− (1− p⋆a)
n. (8)

Since no entanglement swapping in the intermediate QPU is in-
volved in the switching network, there is no fidelity degradation
caused by entanglement swapping. Assuming there is only bit-
flip error, the fidelity of the generated shared qubit pair, denoted
by FQTS , is a function of the bit-flip probability as follows:

FQTS = p2b + (1− pb)
2. (9)

V. PERFORMANCE EVALUATION

A. Simulation Settings

Based on [16], we assume the external phase of the static
networks lasts for Te = 2.5 microseconds. Based on [14], we
set the maximum photon production rate γmax as 2 megahertz.
That is, we set ne as γmax · Te = 5000. For fairness, we
compare the performance of the three static networks in each

time slot with ne = 5000 and that of the proposed switching
network with n = 5000 entanglement generation attempts.
Since entanglement swapping in the static networks takes tens
of microseconds [17], we neglect the duration of the internal
phase, which favors the static networks. As reported in [18], a
typical value of pp is 0.021. Based on [19], [20], the insertion
loss can be as low as −0.1 dB (pi = 0.977) and −0.35 dB
(pi = 0.922), and in this paper, we evaluate the performance
of QTS under pi = {0.977, 0.922, 0.891}. Based on [14], [21],
we set pf = 0.98, pd = 0.8, and ps = 0.95. In terms of the
grid network with N = 2n QPUs, we set N1 = 2⌈

n
2 ⌉ and

N2 = 2⌊
n
2 ⌋.

B. Simulation Results

We first compare the average success probability of generating
a shared Bell state between two randomly selected QPUs at
each time slot with ne = 5000 in the three statics networks
and that in the proposed switching network with n = 5000 and
pi = {0.891, 0.922, 0.977}, as shown in Figure 4. Among the
three static networks, the grid network performs the best while
the line network performs the worst, indicating that network
topology significantly influences static network performance.
Regarding the QTS network, as pi increases, the average success
probability increases. In addition, the average success probabil-
ity under a larger pi decreases more slowly as N increases. This
is because the larger pi means the smaller switch’s insertion loss.
Besides, compared with the static networks, the QTS network
generally performs better. Although for small network scales N
and pi, i.e., N = 4 and pi = 0.891, the static networks exhibit
superior average success probability performance compared to
the QTS network, the average success probability downtrend
observed in our QTS network is considerably smaller than those
observed in the three static networks. This discrepancy arises
from the fact that the downtrends in average success probability
for these static networks are all mainly governed by O( 1

N ),
whereas the downtrend in our QTS network is determined by
O(p

2 log2(N)
i ) = O( 1

N−2 log2(pi)
). That is, as N increases, our

proposed QTS demonstrates better performance compared to
the three static networks when pi ≥ 1/

√
2, which is generally

ture [19], [20]. Consequently, QTS holds greater potential than
the static networks for large-scale DQC.

Next, we compare the average fidelity of the successfully
generated shared Bell state between two randomly selected
QPUs at each time slot in the three statics networks and that
in the proposed switching network under F = {0.99, 0.9},
as shown in Figure 5. The figure demonstrates that our QTS
network consistently outperforms three static networks in terms
of average fidelity. As N increases, the average fidelity of the
three static networks decreases, whereas that of QTS remains
unchanged. This superiority primarily stems from the absence
of fidelity degradation caused by entanglement swapping in
the QTS network, unlike in static networks. Consequently,
the switching network exhibits superior fidelity performance
compared to static networks.

In addition, we compare the average time required for a suc-
cessful entanglement pair generation in the three static networks
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Fig. 6: Average entanglement generation
time for a real-world circuit from [22].

and the proposed switching network. In particular, compare the
average time in the networks for a real-world quantum circuit
from [22] with 16 qubits. For static networks, we randomly
map the 16 logical qubits to 16 QPUs in line, ring, and grid
networks, assuming the physical qubits in each QPU represent
a single logical qubit for quantum error correction. We employ
the entanglement routing protocol outlined in [10] for static
networks, enabling simultaneous entanglement generation with
one, two, and up to four routes between S-D QPU pairs in line,
ring, and grid networks, respectively. The remote CNOT gates
are generated sequentially based on their positioning within the
quantum circuit. Figure 6 shows that the average entanglement
generation times within the grid, ring, and line networks are
2.0×, 7.3×, and 1.5e+02× of that in QTS, respectively. The
black error bars show the minimum and maximum entanglement
generation times.

VI. CONCLUSION
Distributed quantum computing is a promising paradigm to

increase the scale of quantum computing systems. In this paper,
we analyze the performance of three static networks and a
proposed switching network regarding the success probability
of entanglement generation and the fidelity of generated shared
entangled qubit pairs. In addition, we conducted extensive real-
world data-driven simulations. Results show that the proposed
switching network demonstrates better scalability. Our future
work will be proposing multistage switching networks that can
generate shared qubit pares between QPUs simultaneously.
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